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ABSTRACT \0\ \v\“’
By separating the microscopic equations of gg%tion for
the particle density and the fields in a plasma into
censemble average and fluctuating parts we have been able
to obtain an unambiguous description of scattering of an
electromagnetic wave from density fluctuations. The
method described can be generalized to include all linear
scattering processes in a plasma involving the inter-

action of transverse and longitudinal waves with fluctu=

ations. %M%»



DRAFT

I, INTRODUCTION

In an earlier paper(l), the author had attempted an un-
ambiguous formulation of the cross section describing
fiuctuation scattering and absorption in a space-dispersive
colliéionless plasma. In the process, an ansatz was in-
voked concerning the introduction of fluctuations in the
Boltzmann-Vlassov (B-V) equation for a plasma. As is well
known, the B-V equations are ensemble average equations for
the particles and fields and as a consequence dc not re-
flect the existence of fluctuations in a plasma; hence, the
need for the aforementioned ansatz. In the present paper
the same problem will be discussed in a more rigorous manner
by introducing the fluctuations in the microscopic equations
of motion for the particles in the plasma.

The need to introduce statistical mechanical methods
for the systematic derivation of the macroscopic Maxwell's
equations in a medium and of fluctuation scattering htas been
recognized many years ago(2'3). It is however, relatively
raecently that Fixman (4) attempted the description of the

coblem by siiultaneous use of microscopic and macroscopic



equations for the electromagnetic field. The implicit
assumptions in Fixman's work were that the microscopic
equations truly represent the complete picture of the
microscopic events in the interaction of fields with
granulated matter and that the macroscopic equations
truly represent the ensemble average properties of the
same interaction. Simultaneous manipulation of the
microscopic and ensemble average fields has yielded a
sensible, if not completly, satisfactory)approach to
the problem. More recently Mazur (5/6) has also dis-
cussed the statistical mechanics of the electromagnetic
properties of matter and has given a molecular theory
of light scattering that closely follows Fixman's steps.
In what follows, we will develop the theory of fluctu-
ation scattering in a collisionless plasma in a more
natural way starting from the microscopic equations for
particles and fields. It is believed that this theory
can adequately and without ambiguity describe all linear

scattering processes in a plasma (transverse waves from

fluctuations, longitudinal waves from fluctuations, £luctu-

ations from fluctuations) whose particle correlations higher

than the second can be neglected.




ITI. THE MICROSCOPIC EQUATIONS FOR A PLASMA

For the microscopic description of the plasma,
we follow the method initiated by Klimontovich(7). He
introduces the random function of the microscopic
particle density for the grfk species in a multicom-

ponent plasma as
1,

0 = L 8GR

A=l
to define the number of particles in phase space épég
around p and q at time t.p and q are canonical variables,
H’ is the number of particles of the ?rth species. From
the Hamiltonian of the system (particles and fields)
Klimontovich then derives the following exact equatioc.: s
of motion forf%(fﬁi) and of the electromagnetic fieid
{Zﬁﬁ))¢ﬁﬂ)2 where éﬁﬂ} is the vector potential and

3{4t) the scalar potential
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where
N (Hf- .
¢ (4L) “Z j dpdq
1 144 (4)

As the discussion will not include an external magnetic
field the term —(FX".\;‘/’-"A“C has been omitted in Eg. 2.
It should be noted that there‘'arc as many eguations 2
as there are species in the system under consideration.
Our objective is to begin with the foregé)ng eqgue -
tions and derive macroscopic {ensemble average) equa-
tions for the electromagnetic field that will descrigf
the index of refraction and fluctuatica scattesing
rocesses. We make the following assumptions(7)2
(a) The microscopic quantity ﬁ&(ﬁ%ﬂ) can be
written as a sum of its ensemble average ralue
r\Vq{/ <fN(FqL/>- and a fluctuating part

V:qut) - SIJ(ch. having a zero e‘qemblc average:

< W e = N'.,°(pqu, < T(EgES
(5)
{(b) The microscopic electromagnc. :c field
can be similarly separated in ensemble average o«
fluctuating parts
A@Gr) = A%+ MG
Ggb) = ¢



with _

<AQEI> = AY@u < AYi> -0

<At > = ¢, <@g =0 .
The separation of the fields in ensemble average and
fluctuating parts is significant. The ensemble average
parts describe the average properties in a plasma such
as propagation, index of refraction, etc., i.e., the
macroscopic properties. 1In this description the plasma
has lost the granularity implied by Eg.-1; it is a con-
tinuum. The fluctuating parts describe the . - ctering
due to the incomplete extinction of the microscopic prop-
agating fields and, on the aVerage; are zero. ‘iiais

statement corresponds to Yvon'sbz) prescription for the

evaluation of fluctuation scattering. It should be noted,

that when only a transverse propagating ensemble average
wave exists, &“%@é) itself is zero.
We now introduce (5) and (6) in equations (2) and

(3). For equation (3) we then have

2, 9t T(0) 0 TP .
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On taking ensemble averages in Eg. (7) only terms in
fm)¢m)Nm) survive; subtracting the resulting en-
semble average equation from Eg. 7 we also obtain an
equation for the fluctuating quantities A"iqﬁz Npu .

We then have the system of equations

T T

Y )A G0 - £ 2V G =T (e
A r\j

(8)

(9)
where T=<0,{ . We now turn our attention to theeguation
of motion for Nr. We introduce the operator

L(g3t) = z£ £V
and henceforth write
Eqe) == Ge@l)- 7 AGL.

£Zc. 2 then takes the form

I(Pt}t/(” )(quu—e. E“(qk) V N (pha,
4 ¢ Eq VG4

V. 85 (10)
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The first step here is to take the ensemble average of

Eq. 10. Clearly, what remains of Eg. (10) is

r =

RCOLNETS te, Bt )V, N;)(ﬁq”t ) +e,< BV Gge) > 1)
Because of Eq. 8, <> of Eq. 11 represents quantities
of the form < NG g 2 = M, (5p345¢)
i.e., two-point, one-time correlations of the fluctuations.
In the derivation of the celebrated Vlassov equation these
terms are neglected thus breaking the coupling with the
hierarchy of equations for the higher-order correlations.
Parenthetically we note here that the solution of the
Vliassov equation (Eq. 11 with <&..2=(0) is obtained by

wr iting N/m(‘(,qft) . N:’({,) + {Jf)('p'qtj and by neglecting
the non-linear terms \2 l\.i;,“('l;;{"cj . These simplifications
lead to the calculation of the space-time dispersive
dielectric constants (8) G‘.(ji-",:,),'/ Cr(tu)/ .

We now subtract Eg. 11 from Eg. 9 and obtain

£, Vo, T, ©),_ -, . P Y U DS
-L.(P#*;C)N; (pg(u) 1—6?, £ )(q£)~\75 Nf' )(§q£) + z.‘ = Gy y?n’ﬁ )Lp,.;c,

-14
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r “ )-:-‘...,.-\":.:'::—“,'7‘ - :Z;..:.‘—..: t 'A ] ﬁ
+t‘\.‘ ~ (‘1"!'\/‘;”{,'((":&/ =

(12)

where the double bar implies that for a quantityf ,F = F -<¥-.

e
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In the absence of ensemble average fields in the system
and on the assumption that two-point one-time correlations

can be neglected (i. e.'“‘o ) eq. 12 reduces to

i(pqt)N”(pqe) +?.¢E qt)- Vh “lge) =0 (12a)
where é“'c_v?-(u c'g‘é ,'L” and where y’JJ M/ are the

non-driven (naturally occuring) field fluctuations in the
plasma. This equation will be useful later in the evaluation
of correlations of fluctuations in ’ff).

Equations 8, 9, 11, and 12 are exact eqguations cnn-
taining both the ensemble average and the fluctuaﬁionb of
particles and fields. They provide the essenti..l qua..:ities
seeded fo describe propagation of transverse and longicudinal
waves, scattering of fluctuations from fluctuations, etc.

For the purposes of the present paper we shall make the
folbowing simplifications:

(a) The ensemble average propagating transverse
electromagnetic field interacts only little with the heavy
ions in the system. It is, therefore, sensible to keep
one term in the summation of the right hand side of Eq. 8
representing the electron current.

(b) To obtain results amenable to calculation we

. . (o) - ~
will use the standard perturbation expansion Nf = %rhd-er‘




~9-
lh— . -

with N ) > 0 and nonlinear terms such as Vl ’”( t)
J‘ P> 0 P

will be neglected.

IITI. THE HIERARCHY OF EQUATIONS FOR THE FIELDS

It becomes expedient at this point to transform the

equations derived earlier from &t to‘&w-space. With
P rlegendt
-F(q L) = H( R & v‘v;g;,@

we have for Eq. 8 (neglecting all particles except

electrons)

-

{

1] . ! =(T) - s ) PN ( i o ‘J J o
(' 1'25«\“‘/0‘)'4‘ () - (Raofe )" () R P i (ij.

(13)

For *Eg. 9

4oy = Z .‘l’iir. N tews, k40 (1)

e @] & =
*we have V'({/[§-§|) = -4clG4') = V 9@, . We
elearly then after a Fourier transformation =,
o~
, T - ~1R - O
- &"t}'('&',}'- ame g . However, X‘f""‘)(‘iw) 1 qd(;': N;')('&‘”}f

hence, the resuit of Eq. 14.

e



For Eq. 11 (with V‘;N.‘"(,;qe) MV’SN;)(ﬁ) and o (Fiw) =- iw+ikp/m ),
!

o §%w)N’f°)(§¥§a)) +e, Eh)(fe:o)'VF N;'(F)

)T, () P )
3 €“j< E()(&w)'VFN;)(p/'.QJ ' )/ dédw

‘@t
(15)
. .-..'(9): ey \ ] A (O)I- y
and for Eq. 12 (again v';. I\J,, (qu):v vpl"/ﬂ (p) ):
AT ] s (172 . } o), _
Lpea) N (e + ¢, £y b, ) |
') — - 5 i.'. i
“.0)/ ! ", () —p_ bos o d'&,‘_’?g
+ Q“j L ('&@)VFN‘, (P/"k/‘o (t)) @)y
E(o)( 0l I) \[N(l)( & {‘n ') d__j'_?_idwi
@)
(16)
We can now solve for Ur(o) and Nrm and introduce the

results in Eg. 13. The contributions of E( (uu); V. Nl,:o)(F)
from Eq. 15 and of _E(‘)(:ﬁw)ovﬁ N;:)(P') from Eg. 16 convert
the free space operators of the left hand side of Eq. 13
to operators acting on the ensemble average fields in a
space-dispersive medium. Explicitely, and introducing the
transverse and longitudinal dielectric constants e‘.{&su} and

GL('QICO) , we obtain

[




K Chuo) A k) + K (k) $lhe) = s

_Ar e*(ak'da B L zw ) g vy Tin
| ot i <UD TGk wd)> o

and similarly

K () A" (kw) +J2 (%) ¢ ka) =

/4 dkda' d52_ TEefi 0 N9 LG -
)‘ I ans L7k [t (Ll U G, bl o)

N

OYSUR Yo T " (18)
+ (&w)-VFN‘f,’o),Hc,w-w)

where
ana K tha) = B% (ke k) | R G0y = flak) e ka)

and

T v (” dPYJ_
& ko) = ‘+24mff“‘\/N L/

v Q- aP/'u i

GL(:£ = ‘1‘ Z 4NCV J'& V- NM( ‘ dh SR

w- @ /;hfo..

Equations 17 and 18 form the desired set of coupled equations
for the ensemble average (éﬁ:&”} and the fluctuating

N} ¢PC) fields. Except for the linearization, these
equations are exact equations and by themselves form a

hierarchy of equations for higher order correlations of

particles and fields. All correlations above the second

will henceforth be neglected by omitting the F term in Eq. 18.

To fix ideas on how to proceed from this point we will

assume that the only ensemble average field in the system

N
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is a transverse wave such as would be excited by an in-

cident electromagnetic wave. Then ¢aiC) so that
K Vew) A® (o) =
(4r >. Jd&dw dep <(¢w& 5) &'~ (@l A G YN (5 w2y

-+

@) K(pkw) ,

.- - . (19) ;
K_ (kA" llew) + K (k) 9"k =
() | et ORI G o) ;
(20) ;

- -

" i 7
Multiplying both terms of Eq. 20 by ® and Kx(&¢x and using
the fact that7]4} or'&-A =) we can separate the transverse

from the longitudinal components. We then find

¢ "’&w), Gk %)
l, ! 1A C d&du.\ ! (OP )
K WY N ,1..- w-0) )._!_‘.f:_
A(’ (&U)\I kC Mk J («2”)4 P (P &-«))\g A ( V (P R (21) )
b
/ C (k)
f: ( ,Q«)) - 9 'Z L;;o‘) - {:2_‘
whese (22)
P l,‘;jl-ﬁ_w\) - 9‘ = e ( P - {
I.(f , C h LJJ/C) 67(&60) wE

(23)
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with expressions now available for A P A and ¢“) we %

can now proceed to evaluate the scattering cross sections.

IV. THE SCATTERING CROSS SECTION
\

As was indicated in Ref. 1 a possible method for the
evaluation of scattering cross sections consists of in- i
troducing the values of X“ﬂd“u from Eqg. 21 into Eq. 20
and then evaluating the changes this brings on the imagin-
ary part of JQL@@) This would give a direct and unambiguous
measure of the cross sections. A difficulty, however, oc-
curs here because’of the presence of terms having the form
(N"}(ﬁjpz-é.',wd) N"’(ﬁfﬁffé',' w’-uJ")> ,» necessitating a rather
intricate calculation. Although these terms have been
evaluated in Ref. 7 we shall presently resort to some
simplifications in the momentum space integratic .. which
will hopefully make the results less opaque.

Take for instance the quantity appearing in Eq. 21: .

T, = (e RIS TN G5 o Ke bk S
thywz ;

Using successive vector identities we find that
' ONTY ,
i A f -
T - | (W__w )l (e
| Z I P L

“Re shorlhand motakoy wsed ichow 35 “‘%U‘PM!W"}.



-14-
Converting the integral over the divergence to a line

integral and noting that for ﬁa»w NOA*O we readily obtain

T, = [4 N"'ﬁfs B} fd W (ep )R (L)

Assuming further that “’»'&'P/"' i.e. that £~> 1@ we obtain

T, = ;; K ) k) di (s, K, n)+~—(A'°tw)&)é J a5 N, o

W P/ w

]

, »«—) 7]
u\(A“(*w t)LuoN“/KQ ~6.J l(' KL ]

where 4 is the current fluctuation.

Note that the continuity equation would imply

\ O)r o, ~ > =, T
""-f\‘{x (KJ'-L)' K‘J)’ (K,Q-)"’O thus I,#0 . 1In a similar fashion

we find that

= dp gq(kP) (01, ()
L= Jigpin O i AT (6

=p - _”(A(o/(&l' 1 sz—-‘) {‘) AJ(\)(K Q)

m»”*?ﬁu
(KKL ey 0)/ (11
+ 2 (J‘"(m) LRSS ) KA Ak Qrk)
Integrations in P of Egq. 19 can also be simplified. We

i}

find

I 1) ol ) AR
| . - b . '}\"'l (Y’,L) \"a)z“ ( h \,.4" l(K/-Q)

)
L prﬂ}h% ‘Uﬁmﬁiﬁﬁﬁ
- \JJ(P&U)} g v s

L I it e e s
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It now becomes obvious that inserting c,wAM in Eq. 19
leads to terms @

<ML NY(k! Q)> (T("(Wl) 04.)(‘(1&)) <Nm(ﬂ2)3(')(l('2)>
etc. Restricting ourselves only to density-density

correlations we then find for Eg. 19 when ®»- '£P/W

{7

"'r ";u/ /\ p{w)» - L41>L )al d“"“ d[.d,')” (N()u z,w w)td“’(& &lw~wl/\‘,>

h,?r)‘n‘ ",Qr;
- - . rl
lo)7h D'A‘c)('k” " rft
o Aw;,nu){ I AL (w') - % -
Al e T ) +—;“ T T o
<G Ged) [ fe (Rd)

(24)

However (1)

”(n({ ﬁ/w‘w:y,,:.,{i/ Mu)’ y )>w(2ﬂ)9,5‘(ﬁ &")X/ww)JN '{(‘ “’“GQQ
so that finally

[ X (hw) + AK, (R )] AV Gy ~ O

(26)

where

(3, (R) = Grr)rejd(“")“’ P(""KM‘”U Rod> @

i - (a L){‘ 2 (A
e g 28
'@)t e T

12
-

. = e I
- \/C)C (40 ) W~ & (ou/

[P

e e e e T
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and 5‘, is a unit rector for the rector potential: l“-)ré\A“) .
The scattering cross section ., can then be evaluated *from
J}n{[ﬂkTpéQ)} . The first term in Egq. 28 describes the
scattering of a transverse wave on density fluctuations to
produce a transverse wave; the second term describes the
scattering of a transverse wave on fluctuations to produce
a longitudinal wave. If all the terms in Egs. 17 and 18
(except?;) were kept, additional linear scattering processés
could be described.

The cross section 01@w), gives a generalized ‘rersion

of the Prins-Zernike(?) formula describing scattering from

the covariance of density fluctuations, for it also includes
(10)

"inelastic" scattering processes

Tlhw) = 2N (w/c)Im {‘n(m))} W NN 0) G LK ) §
where m?ﬁw}zéﬂﬁ@)and where f/, is the particle density.
The evaluation of ¢ and the consequences of the second term
1 1. ' 1y, .
offﬂ&b) involving eg&af) are discussed at some length ¢n

Ref. 1.

e ———
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CONCLUSTONS

By separating the microscopic equations for particles
and fields in a plasma into ensemble average and fluctu-
ting parts we have been able to derive a generalized
version of the Prins-Zernike formula for scattering of an
electromagnetic wave from the covariance of density
fluctuations in a plasma. The procedure leading to the
desired results is shown schematically in Table I. The
method developed can be extended to cover all linear
scattering processes involving the interaction of trans-
verse and longitudinal waves with fluctuations in a plasma.
This method does not seem to be restricted to the des-
cription of small fluctuations, for nowhere did we have

to resort to "small signal" analysis.

e e o v ————-
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